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Abstract: In this paper, an efficient method for the numerical solution of a class of fuzzy
Volterra integral equations. The approach starts by expanding the existing functions in terms
of Bernoulli polynomials. Subsequently, using the new introduced Bernoulli operational
matrices of integration and the product along with the so-called collocation method, the
considered problem is reduced into a set of nonlinear algebraic equations with unknown
Bernoulli coefficients. The error analysis and rate of convergence are also given. Finally,

some tests of other authors are included and a comparison has been done between the results.
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1. Introduction

Fuzzy integral equations begins with the investigations [1-4] for the fuzzy Volterra integral
equation that is equivalent to the initial value problem for first order fuzzy differential equations, where
the Banach’s fixed point theorem and the method of successive approximations are applied in the

problem of the existence and uniqueness the solutions. Many researchers have focused their interest on
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this field and published many articles which are available in literature. Many analytical methods like
Adomian decomposition method [5], homotopy analysis method [6], and homotopy perturbation method
[7] have been used to solve fuzzy integral equations. There are available many numerical techniques to
solve fuzzy integral equations. The method of successive approximations [8,9], quadrature rule [10],
Nystrom method [11], Lagrange interpolation [12], Bernstein polynomials [13-17], fuzzy transforms
method [18], and Galerkin method [19] have been applied to solve fuzzy integral equations numerically.
We introduce fuzzy linear Volterra-Fredholm integral equation is introduced.

The rest of the paper has been organized as follows: In section 2, we present some preliminaries
and notations useful for fuzzy integral equations. In section 3, we discuss the properties of Bernoulli
wavelets and function approximation. In section 4, we establish the method for solving Volterra-
Fredholm integral equation. Section 5 deals with the illustrative example which show the efficiency of

the presented method.

2. Preliminaries of Fuzzy Integral Equation

Definition 2.1. (See Ref. [20].)

A fuzzy number u 1s represented by an ordered pair of functions (u(r),2(#));0 < r <1 which
satistying the following properties.

I. u(r) is a bounded monotonic increasing left continuous function.

II. @(r) is a bounded monotonic decreasing left continuous function.

I wu(r)<u(r).0 <r < 1.

For arbitrary w(r)=(u(r).u(r)). v(r)=(v(r).v(r)). and k > 0 we define addition (u + v)and
scalar multiplication by k as:

a. (u+v)(r)=u(r)+v(r)

b. (u+v)(r) = i(r)+¥(r)

c. ﬁﬂ{r} =kg(r}.ﬂ'_u(r‘) =ku(r)

Remark 2.2. (See Ref. [21].)

If the fuzzy function f(f) is continuous in the metric D, its definite integral exists.

Also
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b

(jf(!*! ridt) = J*i(.f:r')dr.

([ £(e.r)de) = [ F(r:r)de.

Definition 2.3. ([22])

A fuzzy number is a function such as u : R — [0:1] satisfying the following properties:

(1) w is normal. 1.e. 3x, € R with u(x;) =1.

(11) u 15 a convex fuzzy set 1.e. w(Ax+(1-A)y) =z nm{ u(x).2(y)}7x,y R, A [0.1].

(111) y 1s upper semi-contmuous on R.

(iv) ix € R : u(x) > 0] is compact, where A denotes the closure of 4.

The set of all fuzzy real numbers is denoted by E. Obviously R E. Here Rc E 1s
R={y_ :yisusualrealmumber;. Tor 0<r=1. 1t is [u], ={xeRu(x)=r} and
[u], = ix € Riu(x) = 0} . Then 1t 1s well-known that for anyr [0.1]. [u],. is a bounded closed
mterval. For 4y =v e E and ., and A eRwhere sum y +v and the means the conventional

addition of two mtervals (subsets) of Afu] ={Ax:x<[u] }means the conventional product

between a scalar and a subset of B.

Definition 2.4. ([22])

Suppose i 15 a fuzzy number and » €[0,1]. Then the r-cut representation of # 1is the pair of

functions L(r) and R(r) both form [0:1] to R defined respectively. by
L(r)=mf{ {x| x) elu] }:if re (0]
= inf{ (x|x) esup p(i)}:if r=0
and
R(r) = sp{{x]x) e[u], }:f re (01]

= sup{(x|x> ssup p(u)}:if r=0

Definition 2.5. ([22])

A fuzzy number vector X = S X)) givenby X, =[X.(F)...X,(7)]. 1si=nl<r=<nis
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called the solution of Volterra-Fredholm mtegral equation if
n H n n — —
= = T' C .= \_' =
245X, = D ay%; =b. > ayx; =3 agx; =b,
=1 7=l i=1 =

J=l

Definition 2.6

Let f:R — E be a fuzzy function (where £ 15 a subset of a Banach space) and ¢, € R. The
derivative f (t,) =) of f atapoint t, is defined by

fltg +h)— f(tg)
p :

f (o) = 1m
h—0"

provided that this limit taken with respect to the metric D, exists and A > 0 be sufficiently small
parameter. The elements f(r,+4) and f(f,) mn the above equation are in Banach space
B =C[0.1]xC[0.1].

Thus, if f(t, + h) =(a@,a) and f(t,)=(b.b).then f(t,+h)— f(t,)=(a—b.a-b).

Clearly [f(ty +h)— f(ty)]/ h may not be a fuzzy number for all h. However. if it approaches
f(t,) (in B) and f(t,) is also a fuzzy number (in E ) this number is the fuzzy derivative of
f(t)at t,.In this case. if f—g,}‘} f'(ra}=(_f{rﬂ).37(ru}} where {_f-_.F]m'e classic

derivative of (f, f). respectively and t,eR.

3. Wavelets and Bernoulli Wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a single
function called mother wavelet. When the dilation parameter a and the translation parameter b vary

continuously, we have the following family of continuous wavelets as

_1 .
Wa.e,{f)=|ﬂ|li!f(u). absR a=0 M
' a

. . . -k -k
If we restrict the parameters @and bto discrete values asa=a, , b=nbya, .a,>1.b,>0
and 7 and k are positive integers. we have the following family of discrete wavelets:
L
W) = |aﬂ|3w(aﬂ t—nby). n.ke Z° (2)

where w,  (f)forms a wavelet basis for I*(R). In particular, when a, = 2. b, =1, then v, (f)
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form an orthonormal basis.

Bernoulli wavelets i, (t) = y(k,n,m,t) have four arguments, where n=12,..25 ke Z",m

15 the order of Bernoulli polynomials and f1s normalized time. They are defined on the mterval

[0, 1) as:

Bl .

[ =
onlty= | AT St 5

0 otherewise

with

1 m=10
~ 1
B, (1) ==1— B, (1) m =0

()™ o)’

) @
wherem =0.L...M -1 andn=12......2°".
The coethicient ,—1 15 for the orthonormality, the dilation parameter 1s
(D™ (m!)’
[0,
Vo @2m) i
=2"%Vand translation parameter is b= (n—1)27"" .
Here £ () are the well-known m"™ order Bernoulli polynomials which are defined on the
interval [0, 1]. and can be determined with the aid of the following explicit formula :
m fm\.
Bu®)=3| " | - (5)
=01
where are r,. i = 0.L.....m are Bernoulli numbers .
The first four such polynomuials, respectively, are
1 3 1 3, 1
Bt)=1. fO)=t-=. ﬁz(rjzr—mg. ‘.83(i‘:l=r3—;.f'+—?.’.
Bernoulli polynomials satisfy the following formula [23].
wy MR
Iﬁ;w) Au(O)dt = ()™ s P 2 (6)
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3.1. Properties of Bernoulli’s Polynomial

Properties of Bernoulli polynomials are given as follows [23]:
1) ﬁm(l_r} = {_ljmﬁm (?‘}m VA

D pL)y=mp,_()meZ"

1 !
5 [ .0 8,0t = (<) 2 (D=1
0 (ml+n!)
; !
K .|.|J5m“3'| dt 16—+ . (1)1 2 0.
0 T
3) jliﬁm (1)dt = Pna1 (X) = By (”}

m—+1

6)sup , _ l[]._‘1J|ﬁ:m('f)| =2

2m+1
4

3,

7) sup t e [D_l]|ﬁ1m+1 (!‘)| =

3.2. Properties of Bernoulli Number

The sequence of Bernoulli numbers («,, ]m <y satistying the following properties [23]:

1} Coms1 = D"Dflm = }Blm{l)'
2) B,1/2)=2™ -De,,.

1 ™ m+1)
EDﬂm__m—lé‘-_ﬁr )

.

3.3. Function Approximation by Using Bernoulli Wavelet Method

Any function which is square integrable in the interval [0,1] can be expanded in a Bernoulli wavelet method
(BWM) as:

21y
YO=3" Vb ® =¥ (Y (7)
n=l m=0
(0B, @) ©
(b, . (t).b, (1))
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In (8), (., .) denotes the inner product.

If the infinite series in (7) is truncated, then (7) can be rewritten as:

Y =[¥0: Vigors Viag1: Va0 Yaag-1ameees Vopt goeeees Yot ]I

(1) = [wr o (). wy (De sy g (0 g () g (D () :*-1_11-1{1)]1"

Therefore we have
YT < W), F(0) >=<u(r). ¥(r) >
then
Y=D"<u(t). ¥(r) =

where
D =<"¥(1),"¥(r) =.

(D, 0 - 0 )
1 ; 0 D, --- 0
—jwm.w dt=| . . . (9)
0 : . 0

0 0 - D,

Then by using (7) D.(i= 1.2.....M} 1s defined as follows:

(D)), | LT -+ DY, (2 i+ 1)dx

*

—1

i, j—l

'ii

(r)dt (10)

J.n

1
=¥, @
2! SO

We can also approximate the function k(x.1) € L[0.1] as follows:

k(x.0) ~ P (x) K ¥(0). (11)
where K is an 27 - M matrix that we can obtain as follows:
K=D"<¥(x)<k(x.t).¥(t)>>D" (12)

3.4. Integration of Bernoulli Wavelet Functions

In Bernoulli wavelet functions analysis for a dynamic system, all functions need to be transformed into
BWM functions. The integration of BWM functions should be expandable into BWM functions with the

coefficient matrix P.

We can approximate function with this base. For example for k = 2 and M=2
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- 1 s
' \I'FE 0=x=— f l <y <

Wo(0) = * 2 w0 (x) = V2 2 =x<l
] otherewise - )
- 0 otherewise
( 1 [ 1
\J6(4r-1) 0<x<= J6(4-3) —<x<l

vy (x)=1 2. wyx)=y 2
[0 otherewise 0 otherewise

W e (1) = [wy (D). vy (D.wr, ()5 (f}]r

I

J‘T(:i.—]_y}(r)d(r} R P*_.'-_Hxl*_l.j.f tha—l_lf}{r)‘r E[G‘I)‘ [113;}

0

where the 27 - M -square matrix P is called the operational matrix of integration. and
(1) 1s defined 1n Eq. (3). A subscript 2" M <2 M of P denotes its dimension and

P(_is 1;22 operational matrix of integration and can be obtained as:
0.25000 0.49999999 0.14433756 3.53554-107°
o 0.24999999 0 0.144337567
P.;:*—l.u;x.;zk—l_u} 1-0.1443375  -3.5355339-10°° -1.02062-10"° ~6.909032-107
0 -0.14433756717 0 1.0206207 107 |

The integration of the cross product of two BWM function vectors can be obtained as

0 07
. - 0 L - 0 ?
‘DZJT:*".M}(FJT a-an () dt) = - (14)
: .
0 0 - L]
where L is an 2" - M diagonal matrix given by
1 0 - 0
o 1 --- 0
D= _ (15)
0 0 1

Egs. (7-15) are very important for solving Volterra- Fredholm integral equation of the second kind

problems, because the D and P matrix can increase the calculating speed, as well as save the memory

storage.
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4. Soultion of Nonlinear Fuzzy Fredholm Integro-differential Equations Using the
Bernoulli Wavelet Method

In this section, we introduce an approximation method (BWM ) to solve the nonlinear fuzzy Fredholm

integro-differential equations of the second kind as:

, b
wx) =Xy ¥y ®=f 0+ ATk D)) dr, (16)
a

where f(x) = Lz([ﬂ,l)}, k(xt) = 2 ([0,1)) = LE{[G,IJ} with a=0b=1and A =0
(0 = » < 1)1s an arbitrary kernel function and y(x) 1s the unknown fuzzy real valued function.

The fuzzy mtegral system of equations is written in the parametric form as follows:

- - b
V() = Fer) + K ) (FO) dt -
a
; b
Y @0 = )+ [k Q) di .
a
where
- | .,
k(x.t) (_}’(I,r}}P _ | kCo,y(p.r))” k(x.nz0
|._ﬁ' (DTN k(<0
and
. o _
k(x,t) (3, 1)F = VRGO () k(x,0)20

[k @) keun) <0

We can approximate the function yeer). ¥y, fr). f(xr) and k(x,/) by BWM as

follows:
) = ¥R . Fr) =¥ (L) (19)
flur) =¥ (x) F¥(r). fr) =Y (EY(r)
k(xf) ~ P (O K (). Y () =¥ B )

V() = Wy W)

which ' (x,r) and ;(;, r) will be evaluated in terms y(x,») and ¥(x,r)

_f(x.r}=i_?(r. r)dt + $(0) 20)

0
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If we expand ¥(0)with HOBB basis i.e. _}T(r,r)— Y7 W(r)and ¥(0) =¥, ¥(x) then

¥, is obtained as follows:

7 =::§({})._f([})-...._f({}j. F(0). $(0)..... 5(0). 3(0), 7(0)..... 5(0)
Mnsl)

i W{x)zj FT¥()dt+T] ¥(x)
0

=77 [W(o)de + 7T ¥(x)
0

=FT PY¥(x)+F ¥(x)
= ({7 P+1) ¥(x)

and we have

Therefore,
L =) (h-L)
Using this technique of (20-23) we can get y(x,7)
Functions y?(x) can be expanded into the BWM functions as:
P =[] = Y@ ¥ Y =¥ Y
V(x) =YY =¥ () ¥(x) Y'Y
() Y YY =¥ () (Y)Y
V) =¥ @)Y

After substituting the approximate equations (19-25) into equations (17) and (18), we get

() (P ({-L)¥()=9"(x) F¥()
+ ).jTT(x}KT(r} (o) (F)7 Y ¥ (r)dr
() (P, -F)¥()="¢"(x) F,¥()

+ ZJI.‘}’I(I)K‘P(J‘)‘*P(E)T T YY) de
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We have:
¥ () (P (G- 1) ¥ =7 () FE()

1

+ APTK | () P dt (B 5P ()

-

]

¥ (x) (P (L -F)¥(r) =¥ (x) F,'¥(r)

! = 27)
+A¥T(x)K j () dt (L) LE() (
0
with the powertul properties of equation(17) we get:
() (P) (G- ()="¥" () §¥ ()
+ A¥T()KD (B 1, ¥(r)
¥ (x) (P (Y, -T,)¥(r)="¥"(x) F,¥(r) 08
S AT () KD(E) " L (r) )
Therefore
Y G-Y) =K+ KDEHTY, (P BG-T)=FE+2KDEH)"T (29)

Where. the dimensional subscripts have been dropped to simplify the notation. Rewriting (29).

we have

L=P (R+2KDE)"E)+L. L=P(EK+iKDE )T H)+T, (30)
From Eqs. (30) we have a system of M -(n+1)nonlmear equations and M - (n+1) unknowns.
After solving above nonlinear system using Newton method. We can achieve the unknown
vectors ¥, and ¥,. The required approximated solution y(x.7) =P  (x)¥ ¥(r).
Vix.r) = ‘PIL'X}?: ¥(r) with respect to the nonlmear Fuzzy Fredholm mtegro-differential
equations (20-21).

5. Numerical Examples

We consider an example to illustrate the BWM functions for nonlinear fuzzy Fredholm and Volterra
integro-differential equations. In this case, fuzzy approximate solutions using the BWM functions are
given in Tablel.
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Example 1. Consider the following linear FVIDE

y'(t,a) =(05+05a)(e —t) + fot xty (x, a)dx (31)

y'(t,a)=(2—a)(et —t)+ /If xty (t,a)dx

X(O) =05+4+05a y0)=2—-a 0<a<1,0<x<t,te[01].
The exact solution is given by y(t, @) = (0.5 + 0.5a)et, y(t,a) = (2 —a)et.
The exact and obtained approximate solutions of FVIDE are compared in Table 1.
Using Maple program (Maple package version 17) these equations are solved to get the components of

the above iterations. Fuzzy approximate solutions is computed at k=4 and M=3 are given in Table 1

which illustrate the obtained approximate solution compared to the exact solution subject to the initial

conditions.

Table 1: Error of u(t, ) and u(t, a) of Example 1.

X Exact BWM method Absolute error Absolute error
solution solution atM=3k=4| atM=7,k=8

at M=3k=4|andr =0.5 andr = 0.5
andr = 0.5

0.1 | 0.99833416 | 0.9983341428 2.37x107’ 4.61x107%°

0.2 | 0.99334665 | 0.9933467756 1.260x1077 7.02x107%

0.3 | 0.98506735 | 0.9850674729 1.173x10”’ 2.35x107%

0.4 | 0.97354585 | 0.9735458342 2.161x1077 5.11x107%°

0.5 | 0.95885107 | 0.9588503494 7.278x107° 2.73x107%°

0.6 | 0.94107078 | 0.9410707712 1.80x10°7 6.35x107%°

0.7 | 0.92031098 | 0.9203110906 1.086x107~7 1.05x107%°

0.8 | 0.89669511 | 0.8966952102 9.66x10~7 3.24x10°

0.9 | 0.87036323 | 0.8703632216 1.12x10°”7 4.01x10°°

6. Conclusion

In this paper, we proposed an approximation technique to solve fuzzy linear Volterra integral equations.
The method is based upon reducing the system into a set of algebraic equations. The generation of this
system needs just sampling of functions multiplication and addition of matrices and needs no integration.
The matrix D and P are sparse; hence are much faster than other functions and reduces the CPU time
and the computer memory, at the same time keeping the accuracy of the solution. The numerical example

supports this claim. The numerical results obtained by present method is compared with the results
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obtained by a combination of collocation method. From the above table, it manifests that the present
Bernoulli wavelet method gives more accurate results than a combination of collocation method and
radial basis functions (RBFs) results. Illustrative example is included to demonstrate the validity and
applicability of the proposed technique. This example also exhibits the accuracy and efficiency of the

present method.
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