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Abstract:  In this paper, an efficient method for the numerical solution of a class of fuzzy 

Volterra integral equations. The approach starts by expanding the existing functions in terms 

of Bernoulli polynomials. Subsequently, using the new introduced Bernoulli operational 

matrices of integration and the product along with the so-called collocation method, the 

considered problem is reduced into a set of nonlinear algebraic equations with unknown 

Bernoulli coefficients. The error analysis and rate of convergence are also given. Finally, 

some tests of other authors are included and a comparison has been done between the results. 
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1. Introduction    

                   

Fuzzy integral equations begins with the investigations [1-4] for the fuzzy Volterra integral 

equation that is equivalent to the initial value problem for first order fuzzy differential equations, where 

the Banach’s fixed point theorem and the method of successive approximations are applied in the 

problem of the existence and uniqueness the solutions. Many researchers have focused their interest on 
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this field and published many articles which are available in literature. Many analytical methods like 

Adomian decomposition method [5], homotopy analysis method [6], and homotopy perturbation method 

[7] have been used to solve fuzzy integral equations. There are available many numerical techniques to 

solve fuzzy integral equations. The method of successive approximations [8,9], quadrature rule [10], 

Nystrom method [11], Lagrange interpolation [12], Bernstein polynomials [13-17], fuzzy transforms 

method [18], and Galerkin method [19] have been applied to solve fuzzy integral equations numerically. 

We introduce fuzzy linear Volterra-Fredholm integral equation is introduced.  

The rest of the paper has been organized as follows: In section 2, we present some preliminaries 

and notations useful for fuzzy integral equations. In section 3, we discuss the properties of Bernoulli 

wavelets and function approximation. In section 4, we establish the method for solving Volterra-

Fredholm integral equation. Section 5 deals with the illustrative example which show the efficiency of 

the presented method. 

 

 

2. Preliminaries of Fuzzy Integral Equation  

Definition 2.1. (See Ref. [20].)  
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Definition 2.3. ([22]) 

 

Definition 2.4. ([22]) 

 

Definition 2.5. ([22]) 
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Definition 2.6 

 

3. Wavelets and Bernoulli Wavelets  

Wavelets constitute a family of functions constructed from dilation and translation of a single 

function called mother wavelet. When the dilation parameter a and the translation parameter b vary 

continuously, we have the following family of continuous wavelets as 
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Bernoulli polynomials satisfy the following formula [23]. 
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3.1. Properties of Bernoulli’s Polynomial  

Properties of Bernoulli polynomials are given as follows [23]: 

 
 

3.2. Properties of Bernoulli Number 

 

3.3. Function Approximation by Using Bernoulli Wavelet Method  

Any function which is square integrable in the interval [0,1] can be expanded in a Bernoulli wavelet method 

(BWM ) as: 
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In (8), (. , .) denotes the inner product.  

If the infinite series in (7) is truncated, then (7) can be rewritten as: 

 

3.4. Integration of Bernoulli Wavelet Functions  

In Bernoulli wavelet functions analysis for a dynamic system, all functions need to be transformed into 

BWM functions. The integration of BWM functions should be expandable into BWM functions with the 

coefficient matrix P. 

We can approximate function with this base. For example for k = 2 and M=2 
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Eqs. (7-15) are very important for solving Volterra- Fredholm integral equation of the second kind 

problems, because the D and P matrix can increase the calculating speed, as well as save the memory 

storage. 
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4. Soultion of Nonlinear Fuzzy Fredholm Integro-differential Equations Using the 

Bernoulli Wavelet Method  

In this section, we introduce an approximation method (BWM ) to solve the nonlinear fuzzy Fredholm 

integro-differential equations of the second kind as: 
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After substituting the approximate equations (19-25) into equations (17) and (18), we get 
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equations (20-21). 

5. Numerical Examples  

We consider an example to illustrate the BWM functions for nonlinear fuzzy Fredholm and Volterra 

integro-differential equations. In this case, fuzzy approximate solutions using the BWM functions are 

given in Table1.  
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Example 1. Consider the following linear FVIDE 

𝑦′(𝑡, 𝛼) = (0.5 + 0.5𝛼)(𝑒𝑡 − 𝑡) + ∫ 𝑥𝑡 𝑦
𝑡

0
(𝑥, 𝛼)𝑑𝑥                              (31) 

𝑦 ′̅(𝑡, 𝛼) = (2 − 𝛼)(𝑒𝑡 − 𝑡) + ∫ 𝑥𝑡𝑦

𝑡

0

(𝑡, 𝛼)𝑑𝑥 

𝑦(0) = 0.5 + 0.5𝛼,    𝑦(0) = 2 − 𝛼,   0 ≤ 𝛼 ≤ 1, 0 ≤ 𝑥 ≤ 𝑡, 𝑡𝜖[0,1].                              

The exact solution is given by 𝑦(𝑡, 𝛼) = (0.5 + 0.5𝛼)𝑒𝑡 ,   𝑦(𝑡, 𝛼) = (2 − 𝛼)𝑒𝑡.    
   

The exact and obtained approximate solutions of FVIDE are compared in Table

 

1. 

Using Maple program (Maple package version 17) these equations are solved to get the components of 

the above iterations. Fuzzy approximate solutions is computed at k=4 and M=3 are given in Table 1 

which illustrate the obtained approximate solution compared to the exact solution subject to the initial 

conditions. 

Table 1: Error of 𝑢(𝑡, 𝛼) and 𝑢(𝑡, 𝛼) of Example 1.

 
  

x  Exact 

solution 

BWM method 

solution 

at 𝑀 = 3, 𝑘 = 4 

and 𝑟 = 0.5 

Absolute error 

  at 𝑀 = 3, 𝑘 = 4 

and 𝑟 = 0.5 

Absolute error 

  at 𝑀 = 7, 𝑘 = 8 

and 𝑟 = 0.5 

   0.1 0.99833416

65 

0.9983341428 72.37 10  104.61 10  
0.2 0.99334665

40 

0.9933467756 710260.1   107.02 10  
0.3 0.98506735

56 

0.9850674729 71.173 10  102.35 10  
0.4 0.97354585

58 

0.9735458342 72.161 10  105.11 10  
0.5 0.95885107

72 

0.9588503494 67.278 10  102.73 10  
0.6 0.94107078

92 

0.9410707712 71.80 10  106.35 10  
0.7 0.92031098

20 

0.9203110906 710086.1   101.05 10  
0.8 0.89669511

36 

0.8966952102 79.66 10  93.24 10  
0.9 0.87036323

28 

0.8703632216 71.12 10  94.01 10  

 

6. Conclusion  

In this paper, we proposed an approximation technique to solve fuzzy linear Volterra integral equations. 

The method is based upon reducing the system into a set of algebraic equations. The generation of this 

system needs just sampling of functions multiplication and addition of matrices and needs no integration. 

The matrix D and P are sparse; hence are much faster than other functions and reduces the CPU time 

and the computer memory, at the same time keeping the accuracy of the solution. The numerical example 

supports this claim. The numerical results obtained by present method is compared with the results 
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obtained by a combination of collocation method. From the above table, it manifests that the present 

Bernoulli wavelet method gives more accurate results than a combination of collocation method and 

radial basis functions (RBFs) results. Illustrative example is included to demonstrate the validity and 

applicability of the proposed technique. This example also exhibits the accuracy and efficiency of the 

present method. 
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