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Abstract: The theoretical model for the surface coverage parameter of an electrochemical 

sensor is considered and discussed. Semi-analytical solution has been derived for arsenic 

concentration in the steady state and the non-steady state using a new approach to Homotopy 

perturbation method. Upon comparison, we found that the analytical results of this work are 

in excellent agreement with the numerical results. Further, the sensitivity of the parameters 

in the diffusion of the arsenic ions was also analyzed due to its importance in predicting the 

relationship between the parameters and the model results. 
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1. Introduction 

Arsenic contamination of groundwater in different parts of the world is an outcome of natural 

and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of 

people from different countries are heavily dependent on groundwater containing elevated level of  As

for drinking purposes.  As
 contamination of groundwater, poses a serious risk to human health. 
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Excessive and prolonged exposure of inorganic  As  with drinking water is causing arsenicosis, a 

deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches 

on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases 

like skin and internal cancers [2]. 

 In the proposed model [1], Michaelis - Menten kinetics, which represents the enzymatic reaction, 

has been included as a nonlinear term in the differential equation. The computational modelling is widely 

used instead of expensive physical experiments aiming at understanding the kinetic peculiarities of the 

sensors [3]. Sensors are analytical devices utilized for the recognition of chemical substances in a 

solution to be analyzed. Computational modelling is widely used to improve the sensors design and to 

optimize their configuration [4]. The mathematical modelling of sensors is complicated and time-

consuming task [5].Surface coverage parameter of an electrochemical sensor plays a vital role in 

enhancing the figure of merits of the sensor. Developing a theoretical model for the surface coverage 

will help to standardize the fabrication of working electrodes used in electrochemical sensors. In this 

background, a wavelet based spectral algorithm was developed to model the surface coverage of an 

arsenic sensor [1].   

  

2. Mathematical Formulation of the Problem 

Sathiyaseelan et al.[1] developed the differential mass balance for arsenic in the case of arsenic-

F-doped CdO catalytic reaction, in an unsteady state as follows 
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where  As is the arsenic concentration, ][ AsD is the diffusion coefficient of arsenic, t is time, x is the 

thickness of the F-doped CdO thin film electrode, maxI  is the maximum current response and MK  is the 

Michaelis - Menten constant. In their work, the diffusion layer was defined as the region in the vicinity 

of F-doped CdO thin film electrode where the concentration of arsenic is different from its value in the 

bulk solution (0.4 M NaCl).  

Sathiyaseelan et al.[1] have given the boundary conditions for the arsenic sensor are as follows 

 
0,0 






t

As
x (no transport of arsenic ion)      

0, AsAsdx  (insignificant liquid film resistance)     

  0,0  Ast (arsenic diffusion not in progress)      
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However, we see that 
 

0,0 





t

As
x  is not possible, since, in that case the entire system would 

change into steady state, and (1) would become independent of time. Furthermore, the authors have used 

 
0

0










xdx

Asd
in the latter part of the paper. Hence, we have considered the following conditions as 

boundary conditions for the arsenic sensor  

 
0,0 






x

As
x (no transport of arsenic ion)                                              (2) 

  0, AsAsdx  (insignificant liquid film resistance)                                  (3) 

  0,0  Ast (arsenic diffusion not in progress)                                   (4) 

Introduce the following dimensionless variables 
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Hence we get 
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Substituting the eqns. (6) to (8) in an eqn. (1), we get 
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Introduce 
][0

max

2

2

AsDAs

Id
 , 

0As

K M                                   (10) 

The eqn.(8) becomes  
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The boundary conditions (2) to (4) become 

0,0 





X

A
X                                      (12) 

1,1  AX                                       (13) 

0,0  A                                       (14) 

3. New Approach to Homotopy Perturbation Method 

Linear and non-linear differential equations can model many phenomena in different fields of 

Science and Engineering in order to present their behaviors and effects by mathematical concepts. Most 

of the non-linear differential equations do not have analytical solutions which can be handled by semi-

analytical or numerical methods. In order to obtain exact solution of non-linear differential equations, 

semi-analytical methods such as the variational iteration method[6], Homotopy perturbation method[7], 

Homotopy analysis method[8], and a new approach to the Homotopy perturbation method[9] are 

considered. 

The Homotopy perturbation method was developed by He [10-15]. It is used to solve a system 

of linear and nonlinear differential equations to determine an approximate solution of the system. The 

Homotopy perturbation method [16] has been applied to several initial and boundary value problems. 

Lately, a new approach to HPM is used to solve nonlinear differential equation in zeroth iteration [15]. 

 

4. Semi-analytical Solution to the Steady State of Eqns. (1) to (4) Using New 

Approach to Homotopy Perturbation Method 

Using new approach to HPM [17-24], the solution of the eqns. (11) to (14) in steady state is as 

follows: 

1
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Using the eqns.(5) and (10) in an eqn. (15), we get the steady state solution to the eqns. (1) to (4) 

is as follows: 
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5. Semi-analytical Solution to Eqns. (1) to (4) (non-steady state) Using New  

Approach to Homotopy Perturbation Method 

Using new approach to HPM and Laplace transform technique [25-27], the solution to the eqns. 

(1) to (4) in the non- steady state is evaluated as follows: 
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Using the eqns.(5) and (10) in an eqn. (17), we get the non-steady state solution to the eqns. (1) 

to (4) is as follows: 
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The steady state of the eqns. (17) and (18) are as follows:        
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We here note that eqns. (19) and (20) exactly coincide with eqns. (15) and (16) respectively. This 

clearly indicates that the solution derived for the non-steady state converges to the solution derived for 

the steady state as .t  

 

6. Numerical Simulation 

The non-linear reaction diffusion eqn. (11) with respect to the initial and boundary conditions 

(12) to (14) is also solved numerically. The function pdex4 has been used in MATLAB software to solve 

the initial-boundary value problem numerically. The obtained analytical results are compared with the 

numerical simulation.   The numerical results are presented in figures and tables below. The MATLAB 

program is given in Appendix D.  

 
Fig. 1: Plot of dimensionless concentration of arsenic (A) versus dimensionless thickness of the F-doped 

CdO electrode(X) for some fixed values of parameters and various values of 2 . The lines with dots and 

dashes represent analytical solution and solid lines represent the numerical simulation. 
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  Table 1: Comparison between analytical values and numerical values in Fig. 1 

05.0  
2  

X Numerical solution for A Analytical solution for A 
Absolute  

percentage error 

0.05 

0 .9765 .9766539125 0.015762 

0.2 .9774512874 .9775842066 0.013599 

0.4 .9803052381 .9803768615 0.007306 

0.6 .9850621170 .9850371972 0.00253 

0.8 .9917223626 .9915740932 0.01495 

1 1 1 0 

0.06 

0 .9719 .9720933937 0.019899 

0.2 .9730412909 .9732045694 0.01678 

0.4 .9764652947 .9765406364 0.007716 

0.6 .9821724022 .9821092209 0.00643 

0.8 .9901632597 .9899230544 0.02426 

1 1 1 0 

0.07 

0 .9672 .9675681499 0.038063 

0.2 .9685311750 .9688585278 0.033799 

0.4 .9725248796 .9727331022 0.021411 

0.6 .9791816498 .9792022077 0.002099 

0.8 .9885023700 .9882830999 0.02218 

1 1 1 0 

Average absolute percentage error 0.01371 

 

 

 

 

Fig. 2: Plot of dimensionless concentration of arsenic (A) versus dimensionless thickness of the F-doped 

CdO electrode(X) for some fixed values of parameters and various values of  . The lines with dots and 

dashes represent analytical solution and solid lines represent the numerical simulation. 
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 Table 2: Comparison between analytical values and numerical values in Fig. 2 

5.02   

  
X Numerical solution for A Analytical solution for A 

Absolute  

percentage error 

0.05 

0 .9765 .9766539125 0.015762 

0.2 .9774512874 .9775842066 0.013599 

0.4 .9803052381 .9803768615 0.007306 

0.6 .9850621170 .9850371972 0.00253 

0.8 .9917223626 .9915740932 0.01495 

1 1 1 0 

0.10 

0 .9776 .9776953558 0.009754 

0.2 .9785071730 .9785843048 0.007883 

0.4 .9812288482 .9812527668 0.002438 

0.6 .9857654921 .9857055953 0.00608 

0.8 .9921178775 .9919508874 0.01683 

1 1 1 0 

Average absolute percentage error 0.008094 

 

 

 

 

 

 (a) (b) 

Fig. 3: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless thickness of 

the F-doped CdO electrode(X) for some fixed values of parameters and various values of maxI . The dotted 

lines represent analytical solution and solid lines represent the numerical simulation. 
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 Table 3: Comparison between analytical values and numerical values in Fig. 3(b) 

  9.0,8.0,1,8.0 0  AsdKD MAs  

maxI  
X Numerical solution for A Analytical solution for A 

Absolute  

percentage error 

0.7 

0 .86818 .8687918076 0.07047 

0.2 .8733875813 .8739181397 0.060747 

0.4 .8890435816 .8893576335 0.035325 

0.6 .9152468801 .9152924912 0.004983 

0.8 .9521593601 .9520287707 0.01372 

1 1 1 0 

0.8 

0 .85068 .8523680879 0.19844 

0.2 .8565672611 .8581168078 0.180902 

0.4 .8742727980 .8754405098 0.133564 

0.6 .9039265447 .9045728708 0.071502 

0.8 .9457407172 .9459068519 0.017567 

1 1 1 0 

Average absolute percentage error 0.065602 

 

 

 

 

(a)                                                                          (b) 

Fig. 4: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless thickness of 

the F-doped CdO electrode(X) for some fixed values of parameters and various values of d . The dotted 

lines represent analytical solution and solid lines represent the numerical simulation. 
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 Table 4: Comparison between analytical values and numerical values in Fig. 4(b) 

  9.0,1,8.0,8.0 0max  AsKID MAs  

d  
X Numerical solution for A Analytical solution for A 

Absolute  

percentage error 

0.7 

0 .88376 .8835931897 0.018875068 

0.2 .8883597145 .8881545893 0.023090331 

0.4 .9021841516 .9018858837 0.033060645 

0.6 .9253085967 .9249288437 0.041040686 

0.8 .9578565683 .9575213802 0.034993559 

1 1 1 0 

0.8 

0 .85067 .8523680879 0.199617701 

0.2 .8565572611 .8581168078 0.182071505 

0.4 .8742627980 .8754405098 0.134709129 

0.6 .9039165447 .9045728708 0.072609148 

0.8 .9457307172 .9459068519 0.018624192 

1 1 1 0 

Average absolute percentage error 0.063224 

 

 

 

 

(a)                                                                          (b) 

Fig. 5: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless thickness of 

the F-doped CdO electrode(X) for some fixed values of parameters and various values of 
MK . The dotted 

lines represent analytical solution and solid lines represent the numerical simulation. 
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  Table 5: Comparison between analytical values and numerical values in Fig. 5(b) 

  5.0,5.0,5.0,5.0 0max  AsdID As  

MK  
X Numerical solution for A Analytical solution for A 

Absolute  

percentage error 

0.35 

0 .8681 .8690371979 0.107959671 

0.2 .8733072906 .8741541949 0.096976667 

0.4 .8889589247 .8895654460 0.068228271 

0.6 .9151432569 .9154524364 0.03378482 

0.8 .9520045048 .9521200192 0.012133808 

1 1 1 0 

Average absolute percentage error 0.053181 

 

 

 

 

 

(a)                                                                          (b) 

Fig. 6: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless thickness of 

the F-doped CdO electrode(X) for some fixed values of parameters and various values of  AsD . The dotted 

lines represent analytical solution and solid lines represent the numerical simulation. 
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Table 6: Comparison between analytical values and numerical values in Fig. 6(b) 

5.0,5.0,35.0,5.0 0max  AsdKI M
 

 AsD  
X Numerical solution for A Analytical solution for A 

Absolute  

percentage error 

0.5 

0 .8904868474 .8681 2.514000905 

0.2 .8947838712 .8733072906 2.400197555 

0.4 .9077164117 .8889589247 2.06644793 

0.6 .9294092813 .9151432569 1.534956094 

0.8 .9600718361 .9520045048 0.840284133 

1 1 1 0 

0.6 

0 .8912 .8904868474 0.080021611 

0.2 .8955103255 .8947838712 0.081121823 

0.4 .9084595387 .9077164117 0.081800781 

0.6 .9301018414 .9294092813 0.074460674 

0.8 .9605259046 .9600718361 0.047272905 

1 1 1 0 

Average percentage error 0.810047 

 

 

 

 

 

Fig. 7: Plot of dimensionless non-steady concentration of arsenic (A) versus dimensionless thickness of the 

F-doped CdO electrode(X) for experimental values of parameters [1] and various values of  . The dotted 

lines represent analytical solution and solid lines represent the numerical simulation. 
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  Table 7: Comparison between analytical values and numerical values in Fig. 7 

  456.0,00021.0,001286.0,961.0,00590724.0 0max  AsdKID MAs
 

  
X Numerical solution for A Analytical solution for A 

Absolute  

percentage error 

0.1 

0 .0500646368 .050724 1.317023836 

0.2 .0802550712 .08094726273 0.86248946 

0.4 .1806677101 .1814581805 0.437527215 

0.6 .3705127251 .3714387589 0.249933062 

0.8 .6537822931 .6547816664 0.152860258 

1 1 1 0 

Average absolute percentage error 0.503306 

 

 

 

 

 

(a)                                                                          (b) 

Fig. 8: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless time ( ) for 

various values of .2
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(a)                                                                          (b) 

Fig. 9: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless time     ( ) for 

various values of .  

 

 

 

 
(a)                                                                          (b) 

Fig. 10: (a) and (b): Plot of dimensionless concentration of arsenic (A) versus dimensionless time    ( ) 

for various values of 
maxI .  
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(a)                                                                          (b) 

Fig. 11: (a) and (b):  Plot of dimensionless concentration of arsenic (A) versus dimensionless time ( ) for 

various values of d . 

 

 

 

Fig. 12: The normalized 3-d dimensionless concentration of arsenic (A) versus dimensionless time ( ) and 

dimensionless thickness of the F-doped CdO electrode(X). 
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Fig. 13: Plot of arsenic concentration ][As  versus thickness of the F-doped CdO electrode (x) for various 

values of 
MK .  

 

 

 

(a)                                                                          (b) 

Fig. 14: (a) and (b):  Plot of arsenic concentration ][As  versus time t for various values of 0As .  
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(a)                                                                          (b) 

Fig. 15: (a) and (b):  Plot of arsenic concentration ][As  versus time t for various values of ][ AsD . 

 

 

 

 
Fig. 16: The normalized 3-d  arsenic concentration ][As  versus time t and thickness of the F-doped CdO 

electrode x. 
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                          Fig. 17: Sensitive analysis of parameters 

 

7. Results and Discussion 

The steady state (Appendix A) and the non-steady state (Appendix B) analytical expressions for 

the arsenic concentration have been derived. The derived semi-analytical solutions are compared with 

the numerical solutions derived using Matlab in Figs. 1to7. The semi-analytical solutions make an 

excellent fit with the numerical solutions for experimental values of parameters[1].  

Fig. 1 represents the dimensionless arsenic concentration (A) versus dimensionless spatial 

coordinate(X) for different values of parameter 2 . From the Figure it is clear to observe that the value 

of A decreases when the value of 2  increases. For different values of saturation parameter  , the 

dimensionless arsenic concentration (A) is depicted in Fig. 2. The figure clearly shows that A increases 

with increase in . 

Figs.3(a), 4(a), 5(a) and 6(a) illustrate the dimensionless arsenic concentration (A)  for 

experimental values of parameters[1]and various values of 
maxI ,d, MK ,  AsD  respectively. From figures 

3 to 6, we infer that A decreases with increase in 
maxI , decreases with increase in d , increases with 

increase in MK  and increases with increase in  AsD . 

Fig. 7 represents the arsenic concentration for various values of time for experimental values of 

parameters [1] .The concentration increases when time increases. Figs.8 to 11 show the dimensionless 

arsenic concentration (A) versus dimensionless time  for various values of 2 , ,
maxI and d respectively. 

Figs 13 to 15 show the arsenic concentration ][As  versus time t for various values of MK , 0As  and  
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 AsD  respectively.From the figures, we observe that the system reaches steady state after .2  Fig. 

(12) shows the normalized three-dimensional dimensionless arsenic concentration (A) against 

dimensionless thickness of the F-doped CdO electrode(X) and dimensionless time . Fig. 16 shows the 

normalized three-dimensional arsenic concentration ][As against thickness of the F-doped CdO 

electrode and time t. 

 Differential sensitivity analysis is based on partial differentiation of the aggregated model. We 

have found the partial derivative of arsenic concentration ][As (dependent variable) with respect to the 

parameters 
maxI ,d, MK ,  AsD  (independent variables). At some fixed experimental values (

  00590724.0AsD , 961.0max I , 00021.0d , 001286.0MK , 456.00 As ) of the parameters, 

numerical value of rate of change of arsenic concentration ][As can be obtained. Sensitivity analysis of 

the parameters is given in Fig. 17. From this figure, it is inferred that  AsD  has the maximum positive 

impact on the arsenic concentration ][As , while MK accounts for only small positive change in arsenic 

concentration. d and 
maxI both account for negative impact on arsenic concentration. d accounts for a 

larger change in arsenic concentration when compared to 
maxI  This result is also confirmed in Fig.17. 

 

8. Conclusion 

In this paper, steady state and time dependent approximate analytical expressions for the arsenic 

concentration ][As  are reported. The New Homotopy perturbation method is used to obtain the solution. 

Our results are of excellent fit with the numerical results. The obtained semi-analytical results under 

non-steady state will help the researchers to interpret the effect of the different parameters over the 

arsenic concentration in water. 
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Appendix: A 

In this appendix, we derive the steady state solution to eqns. (11) to (14) using New Homotopy 

perturbation method 

The Steady state of eqns. (11) is 

02

2

2
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
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dX
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                                   (A.1) 

We construct the Homotopy for the eqn. (A.1) is as follows: 
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The approximate solution of eqn. (A.1) is 

...2

2

10  AppAAA                                               (A.3)
 

Substituting eqn. (A.3) in eqn. (A.1) and equating the coefficients of 0p , we get 

0
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The boundary conditions for the above equation becomes 

0,0 0 
dX

dA
X                                                                     (A.5) 

1,1 0  AX
                                               

(A.6)
 

Solving the eqns. (A.4) to (A.6), we get 

1
cosh

1
cosh









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
X

A                                    (A.7) 

 

Appendix: B 

In this appendix, we derive the non-steady state solution to eqns. (11) to (14) using New Homotopy 

perturbation method 

We construct the Homotopy for the  eqn. (11) is as follows: 
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The approximate solution of eqn. (B.1) is 

...2

2

10  AppAAA                                               (B.2) 

Substituting eqn. (B.2) in eqn. (B.1) and equating the coefficients of 0p , we get 
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The boundary conditions for the above equation becomes 

,..3,2,1,0,0,0 



 i

X

A
X i                                                         (B.4) 

,..3,2,1,0,1,1 0  iAAX i
                                  (B.5) 

,...3,2,1,0,0,0  iAi                                    (B.6) 

Applying Laplace transform to the eqns. (B.3) to (B.6), we get 
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,..3,2,1,0,
1

,1 0  iA
s

AX i                                   (B.9) 

,...3,2,1,0,0,0  iAi                                  (B.10) 

Solving eqns. (B.7) to (B.10) 
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Now, let us invert eqn.(B.11) using the complex inversion formula.  

If )(sy represents the Laplace transform of a function )(y , then according to the complex inversion 

formula 
C

dssys
i

y )()exp(
2

1
)( 


  where the integration has to be performed along a line cs  in the 

complex plane where .iyxs  The real number c is chosen in such a way that cs  lies to the right of 

all the singularities, but is otherwise assumed to be arbitrary. In practice, the integral is evaluated by 

considering the contour integral presented on the right-hand side of the equation, which is then evaluated 

using the so-called Bromwich contour. The contour integral is then evaluated using the residue theorem. 

In order to invert eqn.(B.11), we need to evaluate 
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Now, finding the poles of 0A  we see that there is a pole at 0s and there are infinitely many poles given 

by the solution of the equation
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The first residue in eqn. (B.12) is given by 
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The second residue in eqn. (B.12) is given by  
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 Using the eqns. (B.13) and (B.14) in an eqn.(B.12), we get  
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From the eqn. (B.2), we get 
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Appendix: C 

MATLAB program to find the numerical solution of eqns. (11)-(14) 

function pdex4   

m = 0; 

x = linspace(0,1); 

t = linspace(0,0.8); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

%—————————————————————— 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1];  

f = [1] .* DuDx;  

i=0.961; 

k=0.001286; 

d=0.00021; 

D=0.00590724; 

a0=0.456; 

p=(i*d^2)/(a0*D); 

a=k/a0; 
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F=-((p*u(1))/(a+u(1))); 

s=[F]; 

% ————————————————————– 

function u0 = pdex4ic(x);  

u0 = [0]; 

% ————————————————————– 

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)  

pl = [0];  

ql = [1]; 

pr = [ur(1)-1]; 

qr = [0]; 

Appendix: D 

Nomenclature 

Symbols Meaning 

 As  arsenic concentration in M  

 AsD  diffusion coefficient of arsenic in scm /2
 

maxI  maximum current response in A  

MK  Michaelis – Menten constant in M  

x  thickness of the F-doped CdO thin film electrode in cm  

t time in s  

2  Thiele modulus 

  saturation parameter 

A  dimensionless arsenic concentration 

X  dimensionless thickness of the F-doped CdO thin film electrode 

  dimensionless time 

 

 


