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1. Introduction 

The term Airy differential equation was first coined by George Biddell Airy (1801-1892), who 

was particularly involved in optics. He also had an interest in the calculation of light intensity in the area 

of a caustic surface (see [1, 2]). 

A number of scholars have acknowledged that the Airy equation has a significant role in 

difference science as it constitutes a classical equation of mathematical physics. Airy equation has 

various applications in different areas of sciences, particularly in mathematical physics. Its applications 

include modeling the diffraction of light and optic problems, though its applicability is not limited to 

this area [3, 4]. 

The Airy differential equation was originally formed on the basis of the intensity in the 

neighborhood of a directional caustic, such as a rainbow [5]. Actually, this was the problem that 

contributed to the development of the Airy function [6]. It is worth mentioning that the Airy function 

can also be used to find solution for Schrodinger's equation for a particle limited to a triangular potential 
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well and for a particle in a one-dimensional constant force field [7]. Furthermore, it can be employed to 

find solutions to a great number of other problems. It should also be noted that there are many other 

applications that can be attributed to differential equations [8]: 

 

The well-established Airy differential equation featuring integer derivatives has gradually 

developed over the last two centuries not only because it is a fascinating field of research but also because 

of its significance in various areas of science including mathematics, physics and engineering [9, 10]. 

2. Method of Steepest Descent 

Although the philosophy of the method applies to complex integrals in general, the method can 

practically be used for integrals which can be put in a form which belongs to the specific class of integrals 

that we now consider, namely, 

 

where c is some contour in the complex plane, g(z) and h(z), which are independent of λ, are analytic 

functions of z in some domain of the complex plane which contains c, and λ is a real positive number. 

The problem is to find an asymptotic approximation for f(λ) with , λ large. Naturally, we consider only 

those integrals in (2.1) which exist and are finite [11] are considered here. 

Note that g(z) and h(z) are not necessarily analytic in the whole complex plane. They may, and 

in practice frequently do, have isolated singularities including branch points, the branch lines which must 

be carefully noted when using the saddle-point method. With regard to choosing λ to be real and positive 

involves no loss of generality since if a similar integral (2.1) arises in which λ is complex and λ→ ∞along 

a ray, we simply incorporate the eiα  into the h(z) and we have again an integral like (2.1) with the effective 

λ, which is real and positive. The case when λ is real and negative is covered, of course, by taking α= 𝜋 

in the complex λ situation. To obtain a full perception of the idea behind the method of steepest descent, 

we first try to elaborate a limit inequality argument for |f(λ)| from (2.1). 

For the purpose of convenience, at the first we introduce functions ϕ and ψ, by writing 

 

If the contour c, which may be finite or infinite, joins the points z = a and z = b, we have from 

(2.1), with (2.2), 
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Where ds = |dz| and sa and sb correspond to the end points z = b and z = a of the contour. If, for the 

purposes of this preliminary discussion only,∫ 𝑔(𝑧)𝑑𝑧
𝑐

is absolutely convergent (that is,∫ |𝑔|𝑑𝑠
𝑠𝑏

𝑠𝑎
, 𝑑𝑠 is 

convergent), then for λ large the integral in (2.3), is O(eλϕ), except for the usual multiplicative algebraic 

terms like 𝜆−
1

2, 𝜆−1, and so on [11]. If the contour is of finite length L say, then in place of (2.3), we have 

 

where max
L

 max means the maximum of |𝑔|eλϕ on the path c of length L. 

In (2.3) and (2.4) the most important contribution to the asymptotic approximation for |f(λ)| as 

λ→ ∞ must be derived from the vicinity of the point of maximum ϕ, in (2.3). We now try to explore the 

premise that the contour c in (2.1) can be deformed, by Cauchy's theorem, into other contours, at least 

in the domain of analyticity of h(z) and g(z). If g appears with an isolated pole singularity, for example, 

the contour can still be deformed into another, which involves crossing such a singularity, as long as the 

theory of residues is appropriately handled. 

We now deform the path c so that it not only crosses the point z = z0 say, where ϕ = Rlh(z) appears 

with its maximum value, but also along it ϕ drops off on either side of its maximum as rapidly as possible. 

In this way, the largest value of eλϕ as λ→ ∞ will be concentrated in a smallsection of the contour. This 

specific path through the point of maximum eλϕ will be a path of steepest descent. In the case of (2.4), 

the length L of the path also varies in this contour deforming exercise. When a path is close to the optimal 

one in the steepest descent sense, a very small variation in the path, and hence its length L, will result in 

an enormous change in the variation of eλϕ in the vicinity of its maximum when λ is large. Thus, if we 

were interested only in |f(λ)| as λ→ ∞,we would choose a path which made ϕ and hence eλϕ behave in 

the above manner, and then use Laplace's method [11]. However, since we are interested in f(λ) and not 

just its modulus as λ→ ∞,bearing the above discussion in mind, we should be more specific in expressing 

the result. If we take any path through z0, the point giving the maximum ϕ, the imaginary part of h(z) 

gives an oscillatory contribution eiλϕ to the integrand. In fact, the more rapid the oscillations, the larger λ 

becomes. This will put the whole procedure in jeopardy unless an appropriate contour is selected so that 

it reduces the influence of the oscillations on the integrand around z0, in order that one can utilize the 

above idea. 

A proper route that can be taken to cope with this problem is the one in which ψ= Imh(z) is 

constant in the neighborhood of z0, so that no oscillations remains from eiλϕ close to the point of maximum 

eλϕ. This is precisely what we have done in this paper. We now return to f(λ) given by(2.1) with the given 

conditions on g, h, λ and the contour c. 

For illustrative purposes, let us use Cartesian coordinates x, y and write 
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A relative maximum of ϕ is derived from z0 = x0 + i y0, a solution of ∇ϕ = 0 where ∇  is the usual 

gradient operator which in the present situation is i
𝜕

𝜕𝑥
 +j

𝜕

𝜕𝑦
, in which i and j are unit vectors in the x- and 

y- directions. Since ϕ and ψ are the real and imaginary parts of h(z), an analytic function of z, they satisfy 

the Cauchy-Riemann equations which are as follows: 

 

Thus z0 is also a solution of ∇= 0 and hence 

 

When  

 

But from (2.6) (or generally because ϕ + iψ= h(z), which is analytic) ϕ and ψ are potential 

functions satisfying Laplace's equation 

 

where Δ is the Laplacian operator which is simply 
𝜕2

𝜕𝑥2
 +

𝜕2

𝜕𝑦2
 in this equation. However, based onthe 

maximum modulus theorem, ϕ and ψ cannot have a maximum (or a minimum) in the domain of 

analyticity of h(z). The point z0 is thus a saddle-point of ϕ and ψ. Because of (2.7), we argue that z0 is a 

saddle-point of h(z). Here we shall be concerned with saddle-points of order one, that is 

 

If we consider the surface given by ϕ = ϕ(x, y) in the ϕ, x, y space, a typical saddle-point situation 

is represented in the following figure.  

 

Figure 1. Mountain and valley regions and counter lines at z − plan 
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In figure 1, the point S′ in the surface is the saddle-point corresponding to the point S at z = z0 in 

the z-plane. The lower part of figure 1, illustrates the contour lines, that is the projections onto the z-

plane of the inter-sections of the planes ϕ = constant and the three-dimensional surface ϕ = ϕ(x, y) in the 

ϕ, x, y space. It should be added that primes on the points in the surface relief correspond to the unprimed 

points in the z-plane. 

For example, the constant ϕ plane which intersects the surface all along the curves E′P′F′ and 

G′Q′H′ in the upper half of figure 1 has, as its projection on the z-plane, the lines EPF and GQH 

respectively. From (2.7) the tangent plane at the saddle point S′ on the surface is a constant ϕ-plan parallel 

to the z-plane: the intersection of it with the surface projects onto the lines ASD and BSC. Now we try to 

tackle with the question of finding the optimal path into which we should deform the contour c. In order 

to shrink from oscillation problem of eiλϕ, we choose a path along which  

ψ= Im h(z) = constant. From the Cauchy-Riemann equations, since ∇ϕ. ∇= 0, the lines ϕ = constant and 

ψ= constant are orthogonal and so the lines along which changes most rapidly, that is the direction of 

∇ϕ, are thus the lines ψ= constant. If we select the ψ-line which crosses the point z0, where ϕ appears 

with its saddle-point, this is consistent with the required concessions that first along the optimal path ϕ 

has a quick variation close to its maximum and second there are no oscillation contributions from eiλϕ. If 

we now look in detail at figure 1,thesketch of the contour lines (solid) of constant ϕ = Rl h(z) on the z-

plane, shows that there are two lines ψ= Im h(z),  Im h(z) = constant which cross the saddle-point S at z0 

and along which ϕ changes as quickly as possible. However, the dashed line through PSQ which lies in 

the shaded portion of the z-plane, corresponds not to the steepest descent path but to the steepest ascent 

path(P′S′Q′ on the surface) since the value of ϕ on it is such that ϕ(x, y) > ϕ(x0, y0) except at z0.What is 

more, the values of ϕ on such a line become unbounded far from the saddle point: one can easily notice 

this in the three-dimensional relief part of figure 1 where, as mentioned above, the primed letters in the 

relief correspond to the same unprimed letters in the plane. Thus the original contour c, for which the 

integral for f(λ) in (2.1) exists, cannot be deformed into this (the line PSQ) ψ = Im h(z) = constant contour, 

nor can any other contour which lies in the shaded 'mountain' regions. If we now consider the dashed 

line ψ= constant in figure 1 passing through MSN in the z-plane and relate it to the relief surface line 

M′S′N′, we see that for any z = x + i y on this line ϕ(x, y) < ϕ(x0, y0) except at z = z0. Thus this ψ= constant 

line through MSN is the line of steepest descent and the one into which c is to be deformed. Any line 

which lies in the unshaded 'valley' regions and passes through z0, the point S, is a possible deformable 

contour to the optimal one. The words 'mountain' and 'valley' are commonly used to describe the shaded 

and unshaded domains in the z-plane: keeping in mind the relief surface from which they come, it is a 

convenient and obvious description. 

It might be argued that a path which starts and finishes in the valley regions and passes through 
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not S, but Q, say, which lies in the shaded mountain region and hence higher up the saddle at Q in the 

relief surface, is better than the one we have chosen, since over part of such a path ϕ(x, y) > ϕ(x0, y0): the 

integral still exists for such a path. However, in this situation we cannot stay on a single constant ψ-line 

and so we have an oscillation contribution from eiλϕ to contend with, and the argument that the major 

contribution to the integral as λ→ ∞ comes from the region of maximum ϕ is no longer valid. 

It has so far been proposed in this paper that the original contour appears with one end in each of 

the two valleys in a way that a deformation of the original contour occurs into the optimal path of the 

steepest descent. In practice the correct path of the two ψ= constant lines through the saddle-point is 

obtained simply by considering RI h(z) = ϕ along both and choosing the line in which ϕ(x, y) < ϕ(x0, y0) 

except at z0. 

In case the contour appears completely on one side of the saddle-point so that both ends lie in the 

same valley, we can still make use of the proposed method because the contour will still have the capacity 

to deform into lines of constant and the steepest descent philosophy still applies. 

Notation 2.1 Following the overall procedure mentioned above, in this section we try to test the problem 

analytically in order to reach an asymptotic approximation for f(λ) in 2.1 as λ→ ∞. 

It is important to bear figure 1 in mind for the rest of this article. Near the saddle-point z0defined 

by (2.9) as the point where h′(z0) = 0, we can expand h(z) in a Taylor series. 

3. Preliminaries and Main Results 

In this part of the paper, at first a definition of the left and right (conformable) fractional 

derivatives and fractional integrals of higher orders will be presented and then the reaction of fractional 

derivatives and integrals towards each other will be outlined [12]. Following that an asymptotic solution 

for fractional Airy differential equation will be offered. 

Definition 3.1 The (left) fractional derivative starting from a of a function f : [a,∞) of order0 < 𝛼 ≤ 1 

is defined by 

 

The (right) fractional derivative of order 0 < 𝛼 ≤ 1terminating at b of  b is defined by 

 

Notation 3.2 If f is differentiable, then 

and  

Notation 3.3 We have 
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Likewise, in the right case we have 

 

For0 < 𝛼 ≤ 1 , the operators𝐼𝑎
𝛼  and bI

α are called conformable left and right fractional integrals, 

respectively. 

Definition 3.4 Suppose 𝛼 ∈(n, n + 1], Ɐn≥1 and set β= α-n. Then, the (left) fractional derivative starting 

from a of a function f : [ a,∞) → ℝof order α, where f(n)(x) exists, is defined by 

 

When a = 0, we write Dα. 

The (right) fractional derivative of order α terminating at b of  f is defined by 

 

Note that if 𝛼= n + 1, then β= 1 and the fractional derivative of  f converts to f(n+1)(x). 

when n = 0 (or 𝛼 ∈(0,1)), then β= α and the definition equals with those in Definition (3.10). 

Definition 3.5 Assume 𝛼 ∈(n, n + 1], then the left fractional integral starting at a of order α is defined 

as 

 

Definition 3.6 Suppose 𝛼 ∈(n, n + 1], then the left fractional integral starting at a of order α is defined 

as 

 

Proposition 3.7 [13] Let 𝛼 ∈(n, n + 1] and f : [ a,∞) ℝbe (n + 1) times differentiable for x > a. Then, 

for all x > a, we have 

 

Proposition 3.8[13] Let 𝛼 ∈(n, n + 1] and f : [ a,∞) ℝbe (n + 1) times differentiable forb<x. Then, for 

all x > a, we have 

 

Now, we consider fractional Airy differential equation (FADEs): 
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where Dα signifies conformable fractional derivative operator of order α. In order to obtain an asymptotic 

solution for Eq.(3.9), the following discussion presented. 

For Eq.(3.9), at first we try to speculate the solution in the specific form 

 

where the contour c and the complex function ϕ(z) are to be determined. 

By adding (3.10) in (3.9) we will get 

 

Once the second is integral by parts, where z = a and z = b are the ends of the contour c. If we 

now choose the contour such that ϕ𝑒𝑧𝜆𝛼
→ 0 as z→ 𝑎 and z →b and such that ϕ satisfies 

 

Then the right hand side of Eq.(3.12) is zero and the w(λ) given by Eq.(3.10). The solution of 

Eq.(3.12) is 

 
and so we must choose a contour such that 

 
at its points. 

If z → ∞with argz3= 0,2𝜋,4𝜋, for example, then −
𝑎2𝑧3

3
 is real and negative, and 𝑒𝑧𝜆𝛼−

𝑎2𝑧3

3 → 0, 

as z → ∞ along these rays which, in terms of arg z are arg z = 0, 
2𝜋

3
, 

4𝜋

3
. If we choose paths, c1, c2 and 

c3with the end points as shown in Figure 2 that is 

 

Figure 2. Paths c1, c2 and c3 
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Denote by In the integral 

 

with the contours cn(n = 1,2,3), as in (3.13). Then 

 

where c = c1 + c2 + c3 is a closed contour. Since 𝑒𝑧𝜆𝛼−
𝑎2𝑧3

3  is analytic within c, I1 + I2 + I3 = 0, by Cauchy's 

theorem. Thus, I1, I2 and I3 are linearly dependent. 

The F.Airy integral is defined as 

 

where λ is a given constant, complex or real, and c is any of the contours or allowable deformations of 

c1, c2 and c3 in (3.15). 

The actual integral F.Airy considered is that given by the real part of (3.15) 

 

when c is −𝑖∞ to 𝑖∞ and z = i𝔷, namely 

 

where 𝔷 is real now and the path is the real axis. 

In this section, for the purpose of reaching the asymptotic approximation for one of the F.Airy 

integrals (3.15) for λ real, large and positive [11], we will try to employ the method of steepest descent 

we will particularly consider 

 

wherec1 is a contour similar to that in 2, with end points as given by 3.13. The integral in (3.18) does not 

appear in a suitable form as in stands because if g(z) = 𝑒−
𝑎2𝑧3

3 , this has dominates overthe integrand at 

the end points. 

Consequently, we alter the form of (3.18) in a way that it changes to the form (2.1) 

 

and this is done by setting 
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and (3.18) becomes 

 

wherec1 in the z-plane is similar to c1 in Figure 2. 

Here, with a comparison of the Eq.(3.19) 

 

and the saddle points are given by 

 

For the purpose of an asymptotic analysis, a saddle point will be selected that allows c1 to be 

deformed into the steepest descent path through it. 

First, consider the steepest descent path through z = -
1

𝛼
, which is given by the appropriate curve 

of the two paths of 

 

with z = x + iy, these path with h(z) from (3.22) are 

 

which are the curves 

 

i.e., the real axis y = 0 and the left branch of the hyperbola 𝑎2𝑦2 − 3𝑎2𝑥2 + 3 = 0 which passesthrough 

the saddle point x = -
1

𝛼
, y = 0. As illustrated in figure 3, if z = -

1

𝛼
 is the appropriate saddle points to take. 

In the following section we will indicate that it is taken by the hyperbola in figure 3, which is probably 

the path of steepest descent. Nevertheless, it needs to be clearly illustrated below. 

Consider ϕ = Rl h(z), which from (3.22) is

 

At z = -
1

𝛼
, ϕ = -

2

3𝛼
= ϕ0, and so on the path y = 0, ϕ = 

1

3
𝑥(3 − 3𝑎2𝑥2)>= ϕ0, in the vicinity of the saddle 

point x = -
1

𝛼
. Thus y = 0 is the steepest ascents path. On 𝑎2𝑦2 − 3𝑎2𝑥2 + 3 = 0, we see that near z = -

1

𝛼
, 

x ≑-
1

𝛼
 and y is small, and so 
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and hence from (3.27) on the hyperbola near z = -
1

𝛼
 

 

Since
1

2
< 𝛼 ≤ 1, then 1 + 

1

3𝑎
− 𝑎2𝑦2 + ⋯  <  −

2

3
 =ϕ0 

 

 

 

Figure 3. Left branch of hyperbola 3𝛼2𝑦2 − 𝛼2𝑥2 + 3 which passes through the saddle point 𝑥 = −
1

𝛼
 

and 𝑦 = 0 

Hence, the hyperbolic path through z = -
1

𝛼
 appears in the valleys which is consequently the pathof 

steepest descent and accordingly it is the suitable steepest descent path due to the fact that the contour 

c1 of (3.21) may be reshaped to stand on it. (see also figure 3.) 

This suggests that in seeking an asymptotic approximation as z → ∞ an approximate new real 

variable 𝜏 by 

 

which from (3.22) is 

 

which determines z as a function of 𝜏, z(𝜏) say. The integral (2.1) for f(λ) now becomes 
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where𝜏a >0 and 𝜏b>0 correspond to the end points of the original contour under the transformation (3.29). 

On the path of steepest descent 𝜏 is real and so the asymptotic expansion of (3.30) can now be obtained 

by Watson's lemma [11]. Thus (3.30) gives 

 

where z(𝜏) is obtained from (3.28) when z lies on ψ= ψ0. 

It should be noted that the same results can be achieved through the conversion of (3.29). For our 

purpose, however, it is both easier and simpler to consider the conversion near z = -
1

𝛼
, one expanding in 

a Taylor series and bearing in mind that h′ (-
1

𝛼
)= 0, then 

 

which gives, on expanding in a Taylor series and remembering that h′(-
1

𝛼
) = 0, 

 

That is 

 

In case z is on the upper branch of the hyperbolic steepest descent path, the result will be near z 

= -
1

𝛼
, arg z ≑𝜋 and so arg(z + 

1

𝛼
) ≑

2

𝜋
 , which indicates that the argument of the right handside of (3.32) 

is 
2

𝜋
 thus, since 𝜏is real and 𝜏>0, 

𝑖

√𝑎
 should be selected as the appropriate branchof (-

1

𝛼
)1/2, which gives, 

from (3.32), the correct transformation as z + 
1

𝛼
=

𝑖

√𝑎
 and hence 

𝑑𝑧

𝑑𝜏
≑

𝑖

√𝑎
. Note again that 𝜏<0 is consistent 

with z on the lower branch of the hyperbola through z = -
1

𝛼
 . Eq.(3.21) becomes, in terms of 𝜏 

 

and since  
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From (3.20), 𝑣
𝑎2

𝑎  =λ  so F.Ai(λ), defined by (3.18), is 

 

An analysis of the next term shows it to be O(𝜆−
𝑎

4𝑒−
2

3𝑎
𝜆

3𝑎
2

). 

To give a full analysis of this example, we return to the question of the other saddle point at 

 z =
1

𝛼
. Since h(

1

𝛼
) = 

2

3𝑎
, Im h(

1

𝛼
) = 0, and so the paths ψ= Im h(z) = 0 are given by the same expression as 

before, namely (3.27), but now we have the right hand branch of the hyperbola 𝑎2𝑦2 − 3𝑎2𝑥2 + 3 = 0, 

since it passes through the saddle point z = 
1

𝛼
, together with the real axisy = 0 as before. On this branch 

of the hyperbola near z = 
1

𝛼
, x ≑

1

𝛼
 and y is small so from (3.27) 

 

and so this time the hyperbola is the steepest ascent path and is in the mountain regions as indicated in 

figure (4). On the other ψ= ψ0 path, the real axis y = 0, ϕ < ϕ0 near to z = 
1

𝛼
, which makes it a steepest 

descent path. The mountain valley regions in this case are illustrated in figure 4, from which it is clear 

that c1can not be deformed into the real axis, which is the steepest descent path. Thus z = = 
1

𝛼
 is not a 

possible choice of saddle point for F.Ai(λ) in (3.18) where c is the contour c1 of (3.13). 

If we consider F.Ai(λ) in (3.18) with contours c2 and c3 of (3.13), then it is clear from the above 

discussion that the appropriate saddle point to take in their case is z = 
1

𝛼
: each contour (see c2 in figure 4, 

for example) can be deformed to pass through z = 
1

𝛼
 with the final contour lying entirely in the valley 

regions ϕ < ϕ0. 

 

Figure 4. Right branch of hyperbola 3𝛼2𝑦2 − 𝛼2𝑥2 + 3 which passes through the saddle point 𝑥 =
1

𝛼
 

and 𝑦 = 0. 
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Otherwise, another solution of the fractional Airy differential equation, is defined by 

 

 

4. Conclusions 

In this paper, we have presented a discussion about asymptotic solution for fractional Airy 

differential equation (FADE) with steepest descent method in the conformable sense. 

We deformed the contour c to find optimal path. To avoid the oscillation problem of 𝑒𝑖𝜆𝜙 we 

selected a path along with which ϕ = Im h(z) = constant. Then, we deformed the path c so that it not only 

crosses the point z = z0say, where ϕ = Rl h(z) appears with its maximum value, but also along it ϕ drops 

off on either side of its maximum as rapidly as possible. In this way, the largest value of 𝑒𝜆𝜙 as λ→ ∞ 

will be concentrated in a small section of the contour. This specific path through the point of maximum 

𝑒𝜆𝜙 will be a path of steepest descent. 
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